2] Write down the conditions (Group postulates) for the symmetry elements to form a mathematical group.

A set of elements with a binary operation(*) form a group if the elements in the set obey the following rules.

Rule: 1

The product of any two elements A and B in the group combine to give the third element C, which is also an element of the group.and square of each element must be an element in the group.

$$
A \times B=C
$$

Rule :2

An element combines with itself to form another element of the group.

$$
A x A=E
$$

Here E is the member of the same group.

Rule: 3

One element in the group must commute with all others and leave them unchanged. It is designed by E and it is usually represented as identity element.

For example,
$A E=E A=A$
$B E=E B=B \quad$ (here E is the identity element)

Rule: 4

Every element A of a group has an inverse A^{-1} which is also an element of the group.
$A \times A^{-1}=A^{-1} \times A=E$
Therefore, A^{-1} is the inverse of element A.
Similiarly, $\mathrm{A}^{-1}, \mathrm{~A}$ and E should belong to the group G .

Rule : 5

Every element of the group obeys the associative law of combination.
$A(B C)=(A B) C$

3) Define the following terms:

a) Abelian groups:

A Group is said to be abelian, if all the elements commute with each other.

Example: $\mathrm{H}_{2} \mathrm{O}$ molecule belongs to Abelian Group.

b) Non-abelian groups:

A Group is said to be Non-abelian, if all the elements do not commute with each other.

Example : NH_{3} molecule belongs to Non-abelian Group.

c) cyclic groups:

A group is said to be cyclic, if all its elements can be generated from the symmetry element. Thus A, A^{2}, A^{3}, A^{n} form the elements of the cyclic group.

Here $A^{n}=E$, the identity element.
In general, the roots of the equation $x^{n}-1=0$ form a cyclic group.

d) Order of the group:

The total number of elements of a group is called as order of the group.

For example,

1. Water molecule $\mathrm{C}_{2 \mathrm{~V}}$ point group.

The elements are ($E, C_{2}, \sigma_{v}{ }^{\prime}, \sigma_{v}{ }^{\prime \prime}$)
The order of the group is 4 .
2. Ammonia molecule $C_{3 v}$ point group.

The elements are ($E, C_{3}, C_{3}{ }^{2}, \sigma_{v}{ }^{\prime}, \sigma_{v}{ }^{\prime \prime}, \sigma_{v}{ }^{\prime \prime}$)
The order of this group is 6 .

e) sub-group:

This is a smaller group within a group. If any selection or subset of the element of a group satisfies the definition of a group, then this subset of the element is called a sub-group.
*Identity element is essentially a part of sub-group.
Example ; $\left\{E, C_{2}\right\}$ is a sub-group of $C_{2 v}$ point group.

4\} Construct the Group Multiplication table for $\mathrm{C}_{2 v}$ point group

A water molecule has four elements, ($\mathrm{E}, \mathrm{C}_{2}, \sigma_{v}^{\prime}, \sigma_{v}{ }^{\prime \prime}$)
We can easily show that the product of any two symmetry elements is one of the four elements of the group.

Thus for instance, $\mathrm{C}_{2} \mathrm{x} \sigma_{v}{ }^{\prime}=\sigma_{v}{ }^{\prime \prime}$
Proceeding this way the symmetry operations of $\mathrm{H}_{2} \mathrm{O}$ molecule can be listed in a Group Multiplication table.

Step: 1

Water molecule has 4 symmetry elements. Hence, they are arranged in 4×4 table as follows.

	E	C_{2}	$\sigma_{v}{ }^{\prime}$	$\sigma_{v}^{\prime \prime}$
E				
C_{2}				
$\sigma_{v}{ }^{\prime}$				
$\sigma_{v}{ }^{\prime \prime}$				

Step :2

Multiply all the symmetry elements of water molecule by E
$E x E=E$
$\mathrm{ExC}_{2}=\mathrm{C}_{2}$
$E x \sigma_{v}{ }^{\prime}=\sigma_{v}{ }^{\prime}$
$E x \sigma_{v}{ }^{\prime}=\sigma_{v}{ }^{\prime \prime}$
Now the Group multiplication table is filled as follows

	E	C_{2}	σ_{v}^{\prime}	$\sigma_{v}^{\prime \prime}$
E	E	C_{2}	$\sigma_{v}{ }^{\prime}$	$\sigma_{v}^{\prime \prime}$
C_{2}				
$\sigma_{\mathrm{v}}{ }^{\prime}$				
$\sigma_{v}^{\prime \prime}$				

Step :3
Multiply all the symmetry elements of water molecule by C_{2}
$\mathrm{C}_{2} \times \mathrm{E}=\mathrm{C}_{2}$
$\mathrm{C}_{2} \mathrm{xC}_{2}=\mathrm{E}$
$C_{2} \times \sigma_{v}{ }^{\prime}=\sigma_{v}{ }^{\prime \prime}$
$C_{2} \times \sigma_{v}{ }^{\prime \prime}=\sigma_{v}^{\prime}$

Now the Group multiplication table at the end of step:3 is filled as follows

	E	C_{2}	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime \prime}$
E	E	C_{2}	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime \prime}$
C_{2}	C_{2}	E	$\sigma_{v}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime}$
$\sigma_{\mathrm{v}}{ }^{\prime \prime}$				
$\sigma_{\mathrm{v}}{ }^{\prime \prime}$				

Step :4
Multiply all the symmetry elements of water molecule by σ_{v}
$\sigma_{v}^{\prime} \mathrm{xE}=\sigma_{v}^{\prime}$
$\sigma_{v}{ }^{\prime} \times C_{2}=\sigma_{v}{ }^{\prime \prime}$
$\sigma_{v} \times \sigma_{v}=E$
$\sigma_{v}^{\prime} \times \sigma_{v}{ }^{\prime \prime}=C_{2}$
Now the group multiplication table at the end of step 4 is

	E	C_{2}	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma^{\prime \prime}{ }^{\prime}$
E	E	C_{2}	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime \prime}$
C_{2}	C_{2}	E	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime}$
$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime}$	E	C_{2}
$\sigma_{\mathrm{v}}{ }^{\prime}$				

Step :5

Multiply all the symmetry elements of water molecule by $\sigma_{v}{ }^{\prime \prime}$
$\sigma_{v}{ }^{\prime \prime} x E=\sigma_{v}{ }^{\prime \prime}$
$\sigma_{v}{ }^{\prime \prime} \mathrm{xC}_{2}=\sigma_{\mathrm{v}}{ }^{\prime}$
$\sigma_{v}{ }^{\prime \prime} \times \sigma_{v}{ }^{\prime}=C_{2}$
$\sigma_{v}{ }^{\prime \prime} \times \sigma_{v}=E$
Now the group multiplication table at the end of step 5 is

	E	C_{2}	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime}{ }^{\prime}$
E	E	C_{2}	$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime \prime}$
C_{2}	C_{2}	E	σ_{v}	$\sigma_{\mathrm{v}}{ }^{\prime}$
$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{\mathrm{v}}{ }^{\prime \prime}$	$\sigma_{\mathrm{v}}{ }^{\prime \prime}$	E	C_{2}
$\sigma_{\mathrm{v}}{ }^{\prime}$	$\sigma_{v}{ }^{\prime}$	$\sigma_{v}{ }^{\prime}$	C_{2}	E

